Effect of Color Shading Procedures and Cyclic Loading on the Biaxial Flexural Strength of Zirconia

  • I Tuncel
  • I Turp
  • A. Usumez
Keywords: Biaxial flexural strength, coloring, cyclic loading, zirconia


Purpose: Zirconia is the most preferred ceramic restoration in posterior areas because of its flexural strength. The aim of the study is the evaluation of biaxial flexural strength of different colored zirconium oxide core materials after cyclic loading. Material and Methods: Zirconia discs (12 mm diameter and 1.2 mm thickness) were divided into 6 groups of 12 discs each. Groups were colored according to the Vita Classic shade guide: A3 and D4. One group was not colored and left as control. Each group was randomly divided into subgroups and subjected to mechanical cycling prior to biaxial flexural strength test. Cyclic loading was applied as 50 N loads for 20,000 times for the loaded groups. Samples were subjected to biaxial flexural strength test in a universal testing machine with a crosshead speed of 1 mm/min. Two-way analysis of variance (ANOVA) and Tukey's HSD tests were used for comparisons of the groups. Results: Biaxial flexural strength values did not vary significantly depending on coloring procedure or loading process tested (p>.05). XRD analysis displayed that the monoclinic volume fraction of zirconia was highest in cyclic loaded D4 and was lowest in non-loaded control group. The SEM image revealed that A3 color solution created metallic coloring pigments at grain boundaries. Conclusions: Coloring procedures and cyclic loading did not affect the biaxial flexural strength of zirconia core material; however, microstructural analysis displays changes, which may weaken the zirconia structure on the long term.

Keywords: Biaxial flexural strength, coloring, cyclic loading, zirconia


Journal Identifiers

eISSN: 2229-7731
print ISSN: 1119-3077