Main Article Content

Comparative Analysis of Properties of Particleboards Made from Corn Cobs at Varying Proportions of Clay Soil


K.S. Aina
B.C. Falemara
D.S. Ebeniro

Abstract

Particles of dried corn cobs were employed for manufacture of cement bonded particleboards. Two types of clay soil (red and white) were used as supplement with cement to manufacture cement bonded particleboards. The production of the boards was done at varying proportions of 50/50/0, 50/40/10, 50/30/20, 50/20/30, 50/10/40 and 50/0/50 for (corn/cement/clay) in weight to weight basis while the other considerable production factors like nominal density and curing agent percentage remained constant at 1.30 g/cm3 and 3%. The chemical composition of the soil such as pH, organic carbon, organic matter, total nitrogen, and exchangeable bases were determined. Its impact on physical and mechanical properties such as density, water absorption, thickness swelling, modulus of rupture and modulus of elasticity were also investigated The results of the analysis of variance shows that all considerable production factors for the cement bonded particleboards were significant at 5% level of probability except clay soil type for density. The results show that cement bonded particleboard made of red clay soil with higher content of exchangeable bases proves better outstanding performance in density, strength and dimensional properties than the white clay soil. Among the cement bonded particleboards made at varying proportions. It was discovered that boards of 50/20/30 (corn/cement/clay) had better strength properties than others. Also, the boards made at the proportions of 50/40/10, 50/10/40 and 50/30/20 (corn/cement/clay) were better dimensionally stabled in moisture exposure but weak in strength. The outcome of this study may serve as a guideline for any manufacturer who intends to use clay soil as supplement for production of particleboards.


Keywords: Cement, particleboard, clay soil, corn cobs, strength, variance


Journal Identifiers


eISSN: 2437-2110
print ISSN: 0189-9546