Design, synthesis and antiproliferative activity of hydroxyacetamide derivatives against HeLa cervical carcinoma cell and breast cancer cell line
Abstract
Purpose: To design and develop a new series of histone deacetylase inhibitors (FP1 - FP12) and evaluate their inhibitory activity against hydroxyacetamide (HDAC) enzyme mixture-derived HeLa cervical carcinoma cell and MCF-7.
Methods: The designed molecules (FP1 - FP12) were docked using AUTODOCK 1.4.6. FP3 and FP8 showed higher interaction comparable to the prototypical HDACI. The designed series of 2-[[(3- Phenyl/substituted Phenyl-[4-{(4- (substituted phenyl)ethylidine-2-Phenyl-1,3-Imidazol-5-One}](-4H- 1,2,4-triazol-5-yl)sulfanyl]-N-hydroxyacetamide derivatives (FP1-FP12) was synthesized by merging 2- [(4-amino-3-phenyl-4H- 1, 2, 4-triazol-5-yl) sulfanyl]- N-hydroxyacetamide and 2-{[4-amino-3-(2- hydroxyphenyl)-4H-1,2, 4-triazol-5-yl]sulfanyl}-N hydroxyacetamide derivatives with aromatic substituted
oxazolone. The biological activity of the synthesized molecule (FP1-FP12) was evaluated against HDAC enzyme mixture-derived HeLa cervical carcinoma cell and breast cancer cell line (MCF-7).
Results: HDAC inhibitory activity of FP10 showed higher IC50 (half-maximal concentration inhibitory activity) of 0.09 μM, whereas standard SAHA molecule showed IC50 of 0.057 μM. On the other hand, FP9 exhibited higher GI50 (50 % of maximal concentration that inhibited cell proliferation) of 22.8 μM against MCF-7 cell line, compared with the standard, adriamycin, with GI50 of (-) 50.2 μM.
Conclusion: Synthesis, spectral characterization, and evaluation of HDAC inhibition activity and in vitro anticancer evaluation of novel hydroxyacetamide derivatives against MCF-7 cell line have been achieved. The findings indicate the emergence of potentialanticancer compounds.
Keywords: Molecular docking, Hydroxyacetamide derivative, Histone deacetylase inhibition activity, MCF-7 cell line
Submission of a manuscript to this journal is a representation that the manuscript has not been published previously and is not under consideration for publication elsewhere.
All authors named in each manuscript would be required to sign a form (to be supplied by the Editor) so that they may retain their copyright in the article but to assign to us (the Publishers) and its licensees in perpetuity, in all forms, formats and media (whether known or created in the future) to (i) publish, reproduce, distribute, display and store the contribution, (ii) translate the contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or abstracts of the contribution, (iii) create any other derivative works(s) based on the contribution, (iv) to exploit all subsidiary rights in the contribution, (v) the inclusion of electronic links from the contribution to third party material where-ever it may be located, and (vi) license any thrid party to do any or all of the above.