Synthesis and in vitro antiprotozoal activity of some 2- amino-4-phenyloxazole derivatives
Abstract
Purpose: To prepare some 2-amino-4-(p-substituted phenyl)-oxazole derivatives and to evaluate their in vitro antiprotozoal activity against Giardia lamblia and Trichomonas vaginalis.
Methods: The 2-amino-4-(p-substituted phenyl)-oxazoles (a-g) were synthesized by microwave (MW) irradiation of mixtures of p-substituted 2-bromoacetophenones and urea in dimethylformamide (DMF). All compounds were identified by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and lowand high-resolution mass spectrometry (HRMS). NMR assignments were made based on heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation (HMBC) experiments. Each synthesized compound’s melting point was determined. Antiprotozoal activity against Giardia intestinalis and Trichomonas vaginalis was quantified using a rigorous and sensitive subculture method. The commercial drug, metronidazole, was used as positive control. The 50 % inhibitory concentration (IC50) of the antiprotozoal agents for each protozoa was determined.
Results: Seven 2-amino-4-(p-substituted phenyl)-oxazoles (a-g) were synthesized. The most active compounds against G. lamblia was 2-amino-4-(p-benzoyloxyphenyl)-oxazole (3d) with an IC50 of 1.17 μM, while compound 3e (2-amino-4-(p-bromophenyl)-oxazole) showed the highest anti-trichomonal activity (IC50, 1.89 μM).
Conclusion: The in vitro antigiardial activity of 2-amino-4-(p-benzoyloxyphenyl) oxazole was higher than that exhibited by metronidazole; however, it is necessary increase the number of synthetic derivatives in order to be able to determine their structure-activity relationship.
Keywords: Antiprotozoal, 2-Amino-4-phenyl-oxazoles, Giardia lamblia, Trichomonas vaginalis
Submission of a manuscript to this journal is a representation that the manuscript has not been published previously and is not under consideration for publication elsewhere.
All authors named in each manuscript would be required to sign a form (to be supplied by the Editor) so that they may retain their copyright in the article but to assign to us (the Publishers) and its licensees in perpetuity, in all forms, formats and media (whether known or created in the future) to (i) publish, reproduce, distribute, display and store the contribution, (ii) translate the contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or abstracts of the contribution, (iii) create any other derivative works(s) based on the contribution, (iv) to exploit all subsidiary rights in the contribution, (v) the inclusion of electronic links from the contribution to third party material where-ever it may be located, and (vi) license any thrid party to do any or all of the above.