Main Article Content

Clinical effect of astragaloside IV on breast carcinoma cells based on MDR1: A randomised trial


Liangdong Chen
Deqiang Zhuo
Hongyin Yuan

Abstract

Purpose: To study the clinical effect of astragaloside IV on breast carcinoma cells (BCCs), and its potential mechanisms with respect to multiple drug resistance-1 (MDR1)
Methods: The cytotoxicity of astragaloside IV to BCCs was determined using CCK-8 test, and values of its half inhibitory concentration (IC50) were determined. Transwell assay and flow cytometry were performed to determine the effect of astragaloside (13 μg/mL) on cell invasion and apoptosis. The contents of MDR1 mRNA in BC tissues and cells were determined using real-time quantitative polymerase chain reaction (qRT-PCR), while the protein expression levels of MDR1 in BC cells were determined using western blot assay.
Results: The IC50 of astragaloside IV for MCF-7 and MDA-MB-231 BCCs were 12.57 μg/mL and 13.91 μg/mL, respectively. Transwell experiment showed significantly inhibited invasive capacity and enhanced apoptotic potential of the BCCs after astragaloside IV intervention. However, invasive capacities of the BCCs were markedly enhanced, while their apoptotic capacities were inhibited after transfection with si-MDR1, when compared with controls (p < 0.05). Results of qRT-PCR revealed that the mRNA content of MDR1 in BC tissues and cells (0.42±0.11) was significantly lower than that in normal tissues (0.95±0.18; p < 0.05). Results from western blot assay revealed that the relative expression levels of MDR1 protein were decreased, with values of 0.21±0.05, 0.32±0.07 and 0.74±0.15 for MCF-10A, MCF-7, MAD-MB-231 and MCF-10A, respectively (p < 0.05).
Conclusion: Astragaloside IV regulates the metastasis and apoptosis of BCCs through regulation of MDR1. It also inhibits cell invasion but enhances the apoptosis of BC cells transfected with si-MDR1. These results highlight the prospects of the compound for the treatment of BC.


Journal Identifiers


eISSN: 1596-9827
print ISSN: 1596-5996