Kinetics and thermodynamics of enhanced adsorption of E120 dye using activated carbon
Abstract
Purpose: To study the adsorption of dye (E120) from aqueous solution onto activated carbon.
Method: Factors influencing adsorption were examined and optimized. Three adsorption isotherm models (Langmuir, Freundlich and Temkin) were investigated. Agitation time was set at 72 hours, E120 dye concentration at 10 – 80 mg/L, pH at 7, temperature at 25°C and mass at 125 mg.
Results: Adsorption of E120 dye onto activated carbon was enhanced by decreasing the mass of activated carbon, pH and ionic strength of the solution and by increasing the temperature. Under optimal conditions, the maximum adsorption capacity of activated carbon for E120 dye was 10.1 mg/g at 30°C. The model parameters were 0.307 L/mg (KL), 10.1 mg/g (qm), 0.9491 (R2) for the Langmuir isotherm; 2.98 (n), 0.445 mg/g (Kf), and 0.6592 (R2) for Freundlich isotherm; and 4.59 mg/L (A), 2.23 J/mol (B), and 0.5914 (R2) for Temkin isotherm. Thermodynamic studies indicate that the adsorption of E120 dye onto activated carbon is an endothermic process with an adsorption enthalpy (ΔH) of 8.7 KJ/mol. The positive values for ΔG indicate that adsorption was non-spontaneous. The kinetic study of E120 dye adsorption showed that the adsorption process obeyed pseudo-second order kinetics.
Conclusion: Commercially available activated carbon, in terms of its physical and chemical characteristics, is a superior adsorbent to other adsorbents mentioned in the literature for removal of toxic dye E120 from aqueous solutions at a high removal capacity.
Submission of a manuscript to this journal is a representation that the manuscript has not been published previously and is not under consideration for publication elsewhere.
All authors named in each manuscript would be required to sign a form (to be supplied by the Editor) so that they may retain their copyright in the article but to assign to us (the Publishers) and its licensees in perpetuity, in all forms, formats and media (whether known or created in the future) to (i) publish, reproduce, distribute, display and store the contribution, (ii) translate the contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or abstracts of the contribution, (iii) create any other derivative works(s) based on the contribution, (iv) to exploit all subsidiary rights in the contribution, (v) the inclusion of electronic links from the contribution to third party material where-ever it may be located, and (vi) license any thrid party to do any or all of the above.