PROMOTING ACCESS TO AFRICAN RESEARCH

Tropical Journal of Pharmaceutical Research

Log in or Register to get access to full text downloads.

Remember me or Register



Methanol Extract of Hydroclathrus clathratus Inhibits Production of Nitric Oxide, Prostaglandin E2 and Tumor Necrosis Factor-α in Lipopolysaccharidestimulated BV2 Microglial Cells via Inhibition of NF-κB Activity

RGPT Jayasooriya, D-O Moon, YH Chol, C-H Yoon, G-Y Kim

Abstract


Purpose: Hydroclathrus clathratus is a brown marine seaweed known to possess anti-cancer, anti-herpetic, and anti-coagulant activities. The present study is aimed at investigating some anti-inflammatory effects of H. clathratus.
Methods: We investigated the anti-inflammatory effects of the methanol extract of H. clathratus (MEHC) by expression of mRNA and protein using RT-PCR and Western blot analysis in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The level of nitric oxide (NO) production was analyzed using Griess reaction. The release of prostaglandin E2 (PGE2) and tumor necrosis factor-α (TNF-α) were determined using sandwich ELISA. NF-κB activation was detected using EMSA methods.
Results: The results obtained indicate that the extract (MEHC) inhibited LPS-induced NO, PGE2, and TNF-α production without any significant cytotoxicity (p < 0.05). MEHC also inhibited production of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and TNF-α mRNA in LPS-stimulated BV2 microglial cells. In addition, MEHC significantly reduced (p < 0.05) nuclear translocation of the nuclear factor-κB (NF-κB) subunits, p50 and p65, and its DNA-binding activity in LPS-stimulated BV2 microglial cells.
Conclusion: These results suggest that MEHC suppresses the induction of TNF-α, as well as iNOS and COX-2 expression, by blocking LPS-induced NF-κB activation.

Keywords: Hydroclathrus clathratus, Nitric oxide, Prostaglandin E2, Tumor necrosis factor-α, Nuclear factor-κB




http://dx.doi.org/10.4314/tjpr.v10i6.4
AJOL African Journals Online