Tropical Journal of Pharmaceutical Research

The AJOL site is currently undergoing a major upgrade, and there will temporarily be some restrictions to the available functionality.
-- Users will not be able to register or log in during this period.
-- Full text (PDF) downloads of Open Access journal articles will be available as always.
-- Full text (PDF) downloads of subscription based journal articles will NOT be available
We apologise for any inconvenience caused. Please check back soon, as we will revert to usual policy as soon as possible.

Formulation and Characterization of Sustained Release Floating Microballoons of Metformin Hydrochloride

A Yadav, DK Jain


Purpose: To formulate sustained release gastroretentive microballoons of metformin hydrochloride with the objective of improving its bioavailability.
Methods: Microballoons of metformin hydrochloride were formulated by solvent evaporation and diffusion method using varying mixtures of hydroxypropyl methylcellulose (HPMC) and ethyl cellulose (EC) polymers. The balloons were characterized for particle size, surface morphology, incorporation efficiency, floating behavior and in vitro drug release.
Results: The mean particle size of the formulated microballoons was in the range of 34.2 ± 4.7 to 95.7 ± 2.2 μm. Incorporation efficiencies of over 83.8 ± 0.9 % were achieved for the optimized formulations. Most of the formulations were buoyant with maximum buoyancy of 81.4 ± 2.0 % for > 12 h, showing good floating behavior of microballoons. Release kinetic data showed best fit to the Higuchi model, indicating that diffusion was the predominant mechanism of drug release.
Conclusion: Microballoons is a potential suitable delivery system for sustained release of metformin hydrochloride with improved bioavailability when compared with conventional dosage forms of the drug.

Keywords: Gastroretentive drug delivery system (GDDS), Solvent evaporation and diffusion method, Higuchi, Microballoons, Metformin hydrochloride
AJOL African Journals Online