PROMOTING ACCESS TO AFRICAN RESEARCH

Journal of African Association of Physiological Sciences

Log in or Register to get access to full text downloads.

Remember me or Register



Elevated extracellular potassium ion concentrations suppress hippocampal oscillations in a mouse model of Dravet syndrome in-vitro

A Yusuf, J.O. Ayo, A.A. Abba, A Mohammed, F Kalume

Abstract


Background: Hippocampal hyperexcitability and seizure-like events have been consistently demonstrated in hippocampal slice preparations perfused with ≥ 5 mM high [K+] artificial cerebrospinal fluid (ACSF). Accordingly, high [K+] ACSF has been effectively employed as ionic model of seizure for in vitro experiments, but then, how reliable is this model when employed for in-vitro studies of brain tissues with dysregulated K+ homeostasis? To address this question, we examined how elevations of [K+]o affect hippocampal oscillations in Scn1a mutant mouse, a mouse model of Dravet syndrome, a devastating genetic-epilepsy associated with gliosis, a major cause of dysregulated K+ homeostasis in epileptic brain.

Methods: To this end, performing local field potential (LFP) recordings from hippocampi of P30 to P38 Scn1a mutant mice (Scn1a +/-) and wild-type littermates (Scn1a +/+), maintained on a C57BL/6 genetic background, in brain slice preparations in normal and high K+ conditions, we studied the effect of 4 mM and 5 mM high [K+] ACSF(s) on hippocampal oscillations.

Results: Hippocampal hyperexcitability was observed only in Scn1a +/+ but not in Scn1a +/- mice. In Scn1a +/- mice, spontaneous hippocampal hyperexcitability was observed in normal ACSF but was significantly suppressed by 4 mM and 5 mM high [K+] ACSF(s).

Conclusion: In conclusion, these findings, for the first time, provide evidence of spontaneous hippocampal activity in Scn1a+/- mice older than P30 which may be potentially used as a target for screening anti-epileptic approaches, beneficial for the treatment of DS. Elevated [K+]o-induced depolarization block of neuronal action potentials is involved in epileptic brain tissues modulated in elevated [K+]o. This mechanism underlies the suppressing effect of high [K+] ACSF on hippocampal oscillations in Scn1a+/- mice in vitro. Future studies employing the high K+ ionic model for studies of epileptic brain tissues are required to determine how K+ homeostasis is handled by neurons and glial cells in epileptic brain tissues.

Keywords: Dravet syndrome, artificial cerebrospinal fluid (ACSF), Scn1a mutant mouse, depolarization block




AJOL African Journals Online