Application of Field programmable Gate Array to Digital Signal Processing

  • OA Abisoye


This work shows how one parallel technology Field Programmable Gate Array (FPGA) can be applied to digital signal processing problem to increase computational speed. The best algorithm for solving Digital Signal Processing Applications; Fast Fourier Transform (FFT) algorithm has shown significant speed improvement when implemented on a FPGA. The design methodology, the design tools for implementing DSP functions in FPGAs is discussed e.g. System Generator from Xilinx, Impulse C programming model etc. FPGA design in compares with other technolog) is envisaged. In this research work FPGA typically exploits parallelism because FPGA is a parallel device. With the use of simulation tool, Impulse Codeveloper (Impulse C), of FPGA platform on FFT algorithm, graphical tools that provide initial estimates of algorithm throughput such as loop latencies and pipeline effective rates are generated. Using such tools, you can interactively change optimization options or iteratively modify and recompile C code to obtain higher performance.

Keywords: Platform Programmable Digital Signal Processors Digital Signal Processing (DSP), Field Programmable Gate Array (FPGA)


Journal Identifiers

eISSN: 1596-8308