Galvanostatic Electrodeposition of Ni-Co Alloys in DMSO under a Magnetic Field
Abstract
This paper focuses on the galvanostatic magneto-electrodeposition of Ni-Co alloys in dimethyl sulphoxide (DMSO) in the presence and absence of a permanent parallel magnetic field (PPMF) to the cathode surface. It was found that the mass deposition was enhanced in the presence of PPMF(9 T) compared with the deposition without PPMF. The percentage enhancement potential (ξ%) was elevated (ξ5%=23.11, ξ2%=10.65, ξ0.5%= 4.85) with current densities of 5, 2 and 0.5 mA cm–2, respectively, in the presence of PPMF (9 T). Atomic force microscopy (AFM) showed that the roughness of the Ni-Co alloy films was reduced from 56.187 to 31.716 nm(at 0.2 mA cm–2) and 97.541 to 52.644 nm(at 0.5 mA cm–2) with applied PPMF(9 T) compared with that without the PPMF. The deposited layers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX).
Keywords: Potential enhancement, roughness, DMSO, magnetic electrodeposition
Copyright for articles published in this journal is retained by the journal.
SAJChem applies the Creative Commons Attribution (CC BY) license to manuscripts we publish. This license was developed to facilitate open access – namely, free immediate access to, and unrestricted reuse of, original works of all types. Under this license, authors agree to make articles legally available for reuse, without permission or fees, for virtually any purpose. Anyone may copy, distribute or reuse these articles, as long as the author and original source are properly cited.