Redox Potentials of Ligands and Complexes – a DFT Approach
Abstract
A review of the limited literature concerned with theoretical ways to predict experimentally measured redox potentials of ligands and complexes is presented. Electrochemical and related DFT studies involving series of para-substituted nitrobenzenes and β-diketone bidentate ligands are discussed. New studies involving ferrocenes and bimetallic complexes (containing both rhodium and iron) are additionally reported. Correlations of redox potentials with calculated descriptors; electron affinity (EA), group electronegativity (χR), electrophilicity index (ω), LUMO energy (ELUMO) and HOMO energy (EHOMO) – obtained from calculated electronic energies of neutral, anionic and cationic molecules, are compared. Observed E0’, Epa or Epc gave excellent correlations in the linear relationships between Epc and ELUMO (R2 > 0.99), and Epa and EHOMO (R2 > 0.92). Close correlation with the HOMO-1 energy was also found with the ferrocene-based second oxidation in the Rh complex.
Keywords: Oxidation, reduction, predict, electron affinity, electrophilicity index, electronegativity, LUMO energy, HOMO energy
Copyright for articles published in this journal is retained by the journal.
SAJChem applies the Creative Commons Attribution (CC BY) license to manuscripts we publish. This license was developed to facilitate open access – namely, free immediate access to, and unrestricted reuse of, original works of all types. Under this license, authors agree to make articles legally available for reuse, without permission or fees, for virtually any purpose. Anyone may copy, distribute or reuse these articles, as long as the author and original source are properly cited.