Electrochemical Oxidation of Phenol using a Flow-through Micro-porous Lead Dioxide/Lead Cell
Abstract
The electrochemical oxidation of phenol to benzoquinone followed by the reduction to hydroquinone and catechol was demonstrated by constructing a three-dimensional porous micro-flow cell from lead dioxideand lead. The electrodes were made by using the principles of curing and formation of lead oxide material that are common in the construction of the electrodes used in lead-acid batteries. This resulted in highly porous electrodes that can allow the reactant solution to flow through them in series, without the risk of having the products being oxidized again at the anode that usually occurs in a simple undivided cell. In this study, a 50 mM solution of phenol in a 60 % acetonitrile and water mixture was used that contained 2 % sulphuric acid. The reactant
solution would flow through the anode porous material oxidizing the phenol to benzoquinone. The benzoquinone in solution would then flow through the cathode porous material and reduce to catechol and hydroquinone. The study showed that almost all of the phenol could be converted in one continuous flow process in using a relatively low cost electrochemical micro-flow cell that can be easily scaled up to accommodate larger volumes and concentrations by using electrode manufacturing principles used in the lead-acid battery industry.
Keywords: Phenol, hydroquinone, catechol, lead dioxide, micro-flow cell
Copyright for articles published in this journal is retained by the journal.
SAJChem applies the Creative Commons Attribution (CC BY) license to manuscripts we publish. This license was developed to facilitate open access – namely, free immediate access to, and unrestricted reuse of, original works of all types. Under this license, authors agree to make articles legally available for reuse, without permission or fees, for virtually any purpose. Anyone may copy, distribute or reuse these articles, as long as the author and original source are properly cited.