Main Article Content

Inheritance of seed quality traits and concentrations of zinc and iron in maize topcross hybrids


R.O. Akinwale
A.O. Fadoju
B.H. Sulola
A. Oluwaranti
F.E. Awosanmi

Abstract

Information about the mode of inheritance of maize (Zea mays L.) seed quality traits is crucial in planning for improvement programmes for such traits. The objective study was to determine mode of inheritance and interrelationships between seed quality traits, and Fe and Zn contents in maize. Twenty-six maize genotypes were considered for evaluation in this study. Additive gene action was prevalent for most seed quality traits (>50%); while non-additive gene action was preponderant for Fe and Zn concentrations. Inbreds TZEEI82 and TZEEI64 were outstanding in terms of GCA male effects for conductivity (-0.13** and -0.06*), root number (0.79** and 0.30*), and root fresh weight (0.90*). Genotypes TZEEI81, DTE-STR-Y-SYN-POP-C3, 2009-TZEEI-OR1-STR and 2009-TZEE-OR1-STR-QPM were identified as excellent pollen parents for Fe concentration; and TZEEI58 and TZEEI64 for Zn concentration. In addition, only germination index had a significant additive genetic relationship with Fe content (r=0.57*); while both shoot fresh and dry weights had significant positive correlations with Zn content (r=0.45*, 0.53*). Overall, it is clear that different modes of gene action control inheritance of seed quality traits and Fe and Zn concentrations.


Journal Identifiers


eISSN: 2072-6589
print ISSN: 1021-9730