PROMOTING ACCESS TO AFRICAN RESEARCH

Journal of Fundamental and Applied Sciences

Log in or Register to get access to full text downloads.

Remember me or Register



Physico-chemical, thermal and electrical properties of the fabricated polyurethane thin films utilizing bio-based epoxidized soybean oil

J. N. Patricio, M. R. D. Magdadaro, L. J. Y. Jabber, J. C. Grumo, A. C. Alguno, A. A. Lubguban

Abstract


We successfully fabricated polyurethane (PU) thin films deposited on glass substrates utilizing bio-based epoxidized soybean oil (ESBO) via spin coating technique. Prior to deposition, one-shot polymerization condensation reaction was made by reacting varied amount of ESBO-based polyols with isocyanate. Visual inspection using stereomicroscope revealed that both petroleum-based and ESBO-based polyols polyurethane exhibit homogeneous and superior quality thin films as confirmed by scanning electron microscope (SEM) images. Furthermore, Fourier transform infrared (FTIR) spectra showed a higher N-C-O vibrational mode transmission for bio-based polyols while lower vibrational mode transmission for petroleum-based polyols. On the other hand, FTIR spectra showed a higher O-H vibrational mode transmission for bio-based polyols while lower for the petroleum-based polyols. This phenomenon may trigger a stoichiometric ratio closer to unity between polyols and isocyanate that will significantly produce a homogeneous thin film deposition. Moreover, fabrication of uniform thin films was also influenced by the spin coating speed. The fabricated PU thin films utilizing ESBO-based polyols exhibit a higher thermal stability as indicated in the thermogravimetric analysis (TGA).

Keywords: Polyurethane; epoxidized soybean oil; spin coating; thin films




AJOL African Journals Online