PROMOTING ACCESS TO AFRICAN RESEARCH

South African Journal of Animal Science

Log in or Register to get access to full text downloads.

Remember me or Register



Modelling functional and structural impact of non-synonymous single nucleotide polymorphisms of the DQA1 gene of three Nigerian goat breeds

A. Yakubu, M. De Donato, I.G. Imumorin

Abstract


The DQA1 gene is a member of the highly polymorphic MHC class II locus that is responsible for the differences among individuals in immune response to infectious agents. In this study, the authors performed a comprehensive computational analysis of the functional and structural impact of non-synonymous or amino acid-changing single nucleotide polymorphisms (SNPs) (nsSNPs) that are deleterious to the DQA1 protein in Nigerian goats. A 310-bp fragment of exon 2 of the DQA1 gene was amplified and sequenced in 27 unrelated animals that are representative of three major Nigerian goat breeds (nine each of West African Dwarf, Red Sokoto, and Sahel of both sexes) using genomic DNA. Forty-two nsSNPs were identified from the alignment of the deduced amino acid sequences. Based on the PANTHER, PROVEAN and PolyPhen-2 algorithms, there was consensus in identifying the mutants I26D, E114V and V115F as being deleterious. Further, differences between the native and the mutant proteins in the subsequent molecular trajectory analysis (stabilizing and flexible residue composition, total grid energy, solvation energy, coulombic energy, solvent accessibility, and protein-protein interaction properties) revealed E114V and V115F to be highly deleterious. Combined mutational analysis comparing the amutant (I26D, E114V and V115F mutations collectively) with the native protein also showed changes that could affect protein function and structure. Further wet-lab confirmatory analysis in a pathological association study involving a larger population of goats is required at the DQA1 locus. This would lay a sound foundation for breeding disease-resistant individuals in the future. 

Keywords: Goats, in silico, mutants, protein, tropics




http://dx.doi.org/10.4314/sajas.v47i2.6
AJOL African Journals Online